
Cycles Protocol: A Peer-to-Peer Electronic Clearing

System

Ethan Buchman, Paolo Dini, Shoaib Ahmed, Andrew Miller, Tomaž Fleischman

November 2024 - v0.5 ∗

Abstract

For centuries, financial institutions have responded to liquidity challenges by forming closed, cen-
tralized clearing clubs with strict rules and membership that allow them to collaborate on using
the least money to discharge the most debt. As closed clubs, much of the general public has been
excluded from participation. But the vast majority of private sector actors consists of micro or
small firms that are vulnerable to late payments and generally ineligible for bank loans. This low
liquidity environment often results in gridlock and leads to insolvency, and it disproportionately
impacts small enterprises and communities.

On the other hand, blockchain communities have developed open, decentralized settlement systems,
along with a proliferation of store of value assets and new lending protocols, allowing anyone to
permissionlessly transact and access credit. However, these protocols remain used primarily for
speculative purposes, and so far have fallen short of the large-scale positive impact on the real
economy prophesied by their promoters.

We address these challenges by introducing Cycles, an open, decentralized clearing, settlement, and
issuance protocol. Cycles is designed to enable firms to overcome payment inefficiencies, to reduce
their working capital costs, and to leverage diverse assets and liquidity sources, including cryp-
tocurrencies, stablecoins, and lending protocols, in service of clearing more debt with less money.
Cycles solves real world liquidity challenges through a privacy-preserving multilateral settlement
platform based on a graph optimization algorithm. The design is based on a core insight: liquidity
resides within cycles in the payment network’s structure and can be accessed via settlement flows
optimized to reduce debt.

∗Learn more at cycles.money

1

https://cycles.money

Contents

1 Introduction 3
1.1 Payment Systems . 4

2 Design 5
2.1 System of Intents . 6
2.2 Four Ways to Settle . 9
2.3 Graph Solving . 14
2.4 Liquidity . 15

3 Cycles Protocol 16
3.1 Problem Statement . 16
3.2 User Flows . 16
3.3 Privacy & Settlement Architecture . 18
3.4 Discussion . 22

4 Conclusion 25

References 26

2

1 Introduction

We live in a world of increasing financial inequality among firms, aggravated by growing requirements
for collateral when accessing formal financing sources [17]. The vast majority of corporate actors
consists of micro and small firms with zero or modest collateral, which reduces their eligibility for
bank loans [21, 4, 8]. This aggravates the late payment problem [30, 6, 46, 38, 20], leading to gridlock
[31], and often turning liquidity challenges into insolvency [9]. Firms are forced to seek informal
liquidity sources – or in the worst case loan sharks – to access the working capital they need for their
normal operations and growth. The Great Financial Crisis (GFC), the recent Covid public health
crisis, and on-going environmental degradation are making their situation even harder. The rapid
development of alternative monetary and financial systems such as complementary currencies and
cryptocurrencies over the past 15 years can be seen as a direct response to this situation.

It has always been known that sharing financial information can produce better outcomes. Clearing
systems are a primary example. For centuries, banks and payment providers have improved their
profitability and stability by forming closed clearing clubs with strict rules to make collaboration
possible [10, 7]. Clearing allows them to extinguish large amounts of debt using minimal amounts
of money or liquidity in a coordinated and certain manner. Clearing institutions came to serve
as a linchpin of risk management in financial systems, even though they, somewhat paradoxically,
introduce new central counterparties to whom significant risk is transferred. However, most of the
public is excluded from accessing these clearing systems. The general public and small firms cannot
collaborate on clearing since there are no rules to protect them from the harm of exposing their
financial data to their competitors and partners, and membership in clearing house clubs generally
involves high-overhead financial contracts that put them out of reach.

Recent advances in privacy-preserving technology, distributed consensus, and graph algorithms allow
us to overcome these challenges. With privacy technology, debts can be securely and inexpensively
collected from a large number of participants. With distributed consensus, debts can be cleared by the
fault-tolerant execution of atomic multilateral operations, allowing for the simultaneous discharge of
a large number of debts. And, with graph algorithms, debts can be cleared in a risk-reducing manner
without transferring risk to central counterparties. In other words, we can now develop Cycles, a
payment system that optimizes to clear the most debt by performing a large number of settlements in
a single operation, benefiting a wide number of participants, without the introduction of intermediaries
or financial complexity. This opens further use cases for lending and issuance protocols, and allows
firms and communities to greatly improve their liquidity position and reduce risk.

Here, we describe a common language and framework for the design of payment systems, and we
sketch an initial implementation of the Cycles Protocol. The language exposes the structure of the
payment system as a network of obligations among agents and liquidity sources. The framework
is based on a graph optimization algorithm which allows a large number of participants (debtors,
creditors, and liquidity providers) to benefit from clearing the most debt with the least money. The
protocol enables users to privately pool their obligations and their preferences over the use of available
liquidity (cryptocurrencies, stablecoins, lending and issuance protocols, etc), and to execute optimized
atomic multilateral settlements across users.

The design is motivated by a core insight: liquidity resides within the network structure of debts and
can be accessed via cyclic settlement flows optimized to reduce debt. By surfacing the graph structure
of the network in a privacy-preserving manner, operating on it atomically with multilateral settlement
flows, and integrating diverse sources of liquidity, major benefits can accrue which are not otherwise
accessible to individual companies, to trade networks, and to whole economies.

With Cycles, firms can connect their internal accounting system to a global network that optimizes the
clearing of credits and debts using the available sources of liquidity. Firms select which of their debts
they want to submit to the clearing system, and what kinds of assets and credit sources (amounts,

3

terms, etc.) they want to use to pay them. Our initial emphasis is on the trade-credit economy, and
its network of accounts payable. These are typically 30, 60, or 90-day credits extended by suppliers
to their customers (i.e. invoices), that only bear interest once they are overdue. They are a major
source of the cash flows (and stresses) that dominate the operations of a business. In some sense they
are the financial foundation of a commercial economy. Our design presents a practical solution that
optimizes the clearing of this (and other) debt via simple legal patterns, improving cash flow, and
reducing dependence on expensive sources of credit like factoring and bank loans. While trade credit
is presented as an initial focus, the design of Cycles is more widely applicable to debts and payments
in general (rents, wages, interest payments, etc.). It offers a new way to implement robust payment
systems and a new foundation for reasoning about finance.

In the first half of this paper, we develop the language of payments and the core design problem of
graph optimization over a network of obligations and liquidity sources to achieve atomic multilateral
settlement. In the second half, we sketch an initial protocol that implements the design and discuss
some considerations and extensions.

1.1 Payment Systems

We define a payment system to consist of a set of obligations (the debts to pay), and at least one
liquidity source (typically, some asset) that can be used to discharge them. The obligations, together
with offers to use and accept different sources of liquidity, form a network graph. Many of today’s
payment services (banks, fintechs, blockchains) focus primarily on the transfer and exchange of assets,
with limited support for obligations, and with a limited view of the network graph. But these existing
systems become much more powerful when they are integrated into an obligation graph of the kind
we propose. As we will see, first class representation of obligations and the ability to perform atomic
multilateral operations unlocks powerful new capabilities for the collaborative discharge of debt.

Our design is motivated by a critique of existing payment systems, summarized briefly here. Our aim
with this critique is to offer a direction forward for enhancing and complementing existing systems,
rather than replacing them.

First, the modern banking system was not derived from anything approaching a coherent theory of
finance and economics, and has become quite fragile in its relationship to debt [12]. By contrast, we
seek to ground our proposed payment system on first principles, by asking the question: “How do we
design a payment system to reduce the most debt with the least money for everyone?”

Second, much of the risk management in modern systems is focused around central banks as lenders
and dealers of last resort [34]. While useful for backstopping certain kinds of liquidity crises, this
structure has led central banks to be captured by systemic risk [36] and to compound moral hazard
[29, 13]. Instead, our design focuses on risk-reduction mechanisms accessible to the general public by
enabling them to use a wider variety of assets and clearing protocols to make payments.

Third, much payments innovation is focused on the bilateral transfer and exchange of assets by indi-
viduals. However, the payment system has a network structure arising out of the web of obligations
formed in the course of trade and finance. Our proposed payment system allows this multilateral
network structure to be surfaced and optimized over with the tools of graph theory. We focus on the
network structure of the liabilities, rather than the aggregate structure of the assets.

Fourth, modern payment systems often invoke intermediaries, counterparty substitution, and contract
novation, which are associated with a higher regulatory burden and transmutation of risk. By contrast,
we can reduce the need for intermediaries and financial complexity by focusing instead on the existing
network of liabilities (especially trade credit obligations) and leveraging the more permissible legal
structure of set-off notices under international private obligation law [43]. This approach honours the
network of relationships in the obligation graph and allows the focus to remain on network-level risk

4

reduction. It allows debts to be reduced by formal set-off transactions that reduce debts for multiple
parties at once.

Fifth, liquidity in modern banking and blockchain systems is organized around a system of market-
making dealer intermediaries focused on their own enrichment through liquidity provisioning [1]. In
contrast, our proposed payment system is designed without such intermediaries, and is focused on
liquidity saving via set-off. Liquidity provisioning is a short volatility position associated with systemic
risk.1 Liquidity saving is a way to reduce that systemic risk [22].

Finally, payment systems must ultimately reckon with the problem of issuance, which arises when
there is not enough liquidity in the system. There is much to lament about modern issuance through
commercial and central banks [3, 35, 45]. Our proposed design leverages the obligation network –
credit and debt relationships within the non-financial sector – as endogenous network liquidity to
enable new forms of distributed issuance that improve the system’s overall liquidity. We thus present
a platform for new kinds of credit and issuance protocols that are more “network-aware”.

One way to understand our design is that it introduces a clear separation between two key functions
of money: the Unit of Account and the Medium of Exchange. In today’s monetary systems, these
are often conflated in a single “currency”, though historically they were more likely to be distinct
concepts [41]. For our purposes, the function of money is to make payments – to denominate and
discharge debts. The Unit of Account function, then, is for denominating debts, while the Medium of
Exchange function is for discharging them, here and now.2 The graph of obligations at the heart of our
design is a pure expression of the Unit of Account function, while our objective of clearing that debt
using the least amount of “money” is an attempt to leverage any conceivable source (including the
debts themselves!) for the Medium of Exchange function – realizing that debts can be cleared using
any asset, or without even using any money at all. This separation of functions within the design of
the payment system allows for much greater efficiency and more diversified expression of value.

Our design emerges from a synthesis of traditions which are at their core efforts to implement robust
and sustainable payment systems.3 This synthesis is driven by the observation that a great deal of
financial value in support of the real economy is not visible to selfish rational agents reasoning about
their own assets, and can only be accessed through collaborative processes that allow us to operate
over the network of liabilities, which we share an interest in discharging. We seek to harness these
collaborative processes to reduce the constant liquidity pressure currently bearing down on the global
economy.

Thus, without rejecting competition – or capital markets more generally – we uncover a new source of
resilience and sustainability for networks of real economy actors, especially small and medium-sized
enterprises (SMEs), and new ways to leverage internal and external liquidity for mutual benefit. In
so doing, we offer a new path to empower communities to manage their own payment systems and to
issue their own money in a sustainable fashion. In turn, new possibilities emerge for existing pools of
capital to support a more sustainable finance.

2 Design

Our goal is a universal language for representing arbitrary financial relationships as multilateral graph
settlement operations on a network of balance sheet T-accounts. We introduce terminology and a
graphical schema to describe a wide variety of payment, currency, and credit systems as a network of
debt and credit relationships between balance sheets. This language motivates a graph optimization

1Also known as ‘picking up pennies in front of the steamroller’ [29]. In essence, betting on stable prices.
2Store of Value is often considered a third function of money. If the Medium of Exchange function is for discharging

debt here and now, the Store of Value function is for discharging debt elsewhere or later.
3See prior work on obligation-clearing for liquidity-saving [40, 19, 23] with mutual credit [42, 25, 32, 39, 33, 18] and

the simultaneous use of multiple liquidity sources to discharge debt.

5

problem whose solution can be executed as a single multilateral operation, a settlement flow that
discharges many debts with minimal liquidity. The language is based on a system of intents that
allows participants to express their indebtedness and their preferences over the use of different liquidity
sources.

As we’ve noted, much of modern finance today revolves around a bilateral transactional view, focused
on individual settlements, in contrast to our multilateral network view, focused on settlement flows
across a network. The transactional view misses countless opportunities for liquidity saving made
possible by the network view. Further, the transactional view tends to invoke the additional legal
constructions of counterparty substitution and/or contract novation (securitization, factoring, clearing
houses, etc.), which implies replacement of an obligation or counterparty. Changing contracts or
counterparties is expensive, slows down business, and mutates risk. We propose a design that limits
the need for contract novation and counterparty substitution by instead making maximal use of the
existing graph structure4 of obligations and credit relationships. This has the added legal benefit of
moving from the complex world of financial regulation to the simpler world of private obligation law,
which is more accessible and better able to adapt to different contexts. This framing allows us to also
pursue novel use cases for lending and issuance protocols, empowering communities to make better
use of these monetary powers in a more distributed and sustainable fashion.

In the following sections we lay out the foundations for the network view. We start with a graphical
intent system and a complementary balance sheet view of the four possible ways to settle. The network
of intents is operated on by graph flow algorithms, resulting in balance sheet liquidity savings for a
combined network settlement system.

2.1 System of Intents

Our system is based on two key intent types which we call Obligations and Acceptances, an overlay
type called Tenders, and an output type called Settlement Records. Obligations and Acceptances are
commitments to past and future debts, respectively, while Tenders initiate settlement and Settlement
Records denote how much of a tendered obligation or acceptance is to be discharged. Generally
speaking, any payment transaction can be decomposed into these components. We assume intents are
programmable, allowing a wide variety of payment, currency, and credit protocols to be defined.

Obligations. An obligation is the core of any payment – it’s the debt the payment settles. If Alice
owes Bob $30, that’s an obligation. More generally an obligation is a tuple consisting of a debtor,
creditor, and amount. Obligations originate from the debtor as a declaration of their liability to the
creditor. An obligation is an intent to pay. It must be ascertained (signed or accepted) by its debtor,
but it could technically require no ascertainment from the creditor. If Alice declares she owes Bob,
who is Bob to stop her?

Many common obligations also include a due date: invoices, rent, interest, wages, etc. Both debtors
and creditors of obligations with due dates have a general incentive to see that the obligations are
paid, or discharged. Obligations can be fully or partially discharged. Full discharge is usually referred
to as settlement. Our design allows the problem of full discharge to be posed as a graph optimization,
and it also allows agents to take advantage of the benefits of partial settlement.

Creditors might also wish to accumulate obligations from their best debtors, obligations they don’t
necessarily want paid yet, especially if they can call them on-demand. For instance, cash balances at
the bank, which are obligations from the bank that you can get the bank to honour at any time. More
generally, possession of any digital asset can be understood as an obligation from the asset’s issuer
(i.e. a bank, a blockchain, etc.) to the asset holder.

4Respect the Graph.

6

Acceptances. In its most basic form, an acceptance defines how someone wants to be paid, and thus
determines how an obligation can be discharged. Acceptances originate from creditors. If Alice owes
Bob, and Bob says, “I’ll only accept bank money as payment”, that is an acceptance from Bob to
bank money (we might also say an acceptance “for” bank money).

But the settlement of an acceptance immediately creates an obligation in the opposing direction, as
shown in Fig 1, which defines the basic language of obligations and acceptances. When Bob gets
paid, his acceptance to the bank becomes an obligation from it. Bob will generally have an infinite
size acceptance to the bank (willing to be owed an infinite amount by the bank), especially if bank
deposits are legal tender. But he may have a smaller acceptance to other currency issuers. Of the
obligations owed to him, maybe he’ll only accept up to $1000 paid in BTC, while the rest must be
paid in bank deposits.

Bank

Alice

20 20

Owes
Acceptance

20 Bob

Owes

Bank

20

Bob

Owes

Before After

Figure 1: Language of Obligations and Acceptances. Solid arrows are obligations, dashed arrows are
acceptances. The bank owes Alice (cash deposits), who owes Bob (e.g. an invoice), who is willing to be owed
by the bank (an acceptance of bank deposits). After executing a payment, Bob’s acceptance is replaced by
an obligation in the other direction, and the other obligations are discharged. By accepting to the bank, Bob
is “lending” his money to the bank. Instead of being owed by Alice, Bob would rather be owed by the bank
(checking account). In Cycles, the Bank could be any digitally programmable liquidity source – for instance,
BTC, or a smart contract.

We can see right away from Fig. 1 that every payment is actually a cycle when you include the liquidity
source. It’s common to think about accepting money to the bank as creating an obligation from the
bank back to you. But ownership of any digital asset can be represented fruitfully as an obligation
from the asset’s “issuer”. Hence even self-custodied BTC assets can be represented as obligations
from the Bitcoin blockchain. If you own BTC, the blockchain “owes” you the right to move it. Thus
replace Bank with Bitcoin in Fig 1. Representing asset balances as obligations from liquidity sources
allows for a much richer expression of the payment graph.

Acceptances then are commitments to future obligations – commitments from banks and the Bitcoin
blockchain to owe others, and even to owe them on-demand (you can use your cash or BTC at any
moment). We tend to call agents in the economy with a large number of such on-demand acceptances
directed to them liquidity sources. They’re the agents everyone most wants to be owed by, and they’re
the agents willing to owe everyone. We call an acceptance like this, that spawns an on-demand
obligation in the other direction, a Deposit Acceptance.

But suppose Alice doesn’t have cash and actually needs to borrow money from the bank to pay Bob.
Bob still has an acceptance to the bank, indicating his willingness to effectively “lend” to the bank.
But if the bank is willing to lend to Alice, this too can be represented as an acceptance, only from the
bank to Alice. The main difference is that Alice’s loan from the bank will typically have a repayment
date, while Bob’s loan to the bank is available on-demand (a deposit).5 We call an acceptance that
creates an obligation with a repayment date a Repayment Acceptance. Deposit acceptances can be

5Of course both might involve an interest rate, which generates additional interest payment obligations. Interest is a
higher order concept that can be layered on top via the system’s programmability.

7

made to any kind of liquidity source and repayment acceptances can be made from any kind of a
lending facility.

So obligations are commitments to debts in the past while acceptances are commitments to debts in
the future. How are settlements actually initiated? Enter tenders.

Tenders. In its most basic form, a tender defines how someone wants to pay an obligation. Alice
might owe Bob $30, and she might have both bank deposits and a stablecoin like USDC. If Alice says,
“Will you accept this 30 USDC to settle my debt?”, that is a tender. More generally, a tender is an
intent to use up to some amount of a particular source of liquidity to discharge obligations you owe.

If Alice has gold, dollars, and BTC, she might tender any of them, or all three, to pay her debts. For a
non-stable liquidity source like BTC to settle a debt in dollars, the tender must specify an acceptable
price for BTC in dollars. This price could come from an oracle, or it could be specified by Alice. Note
the BTC are not actually exchanged for dollars, but they are used to pay a dollar denominated debt.

When you tender something you already have possession of, like a bank deposit or a stablecoin, the
tender draws on a pre-existing obligation. Your bank deposit is the bank’s liability, and your BTC is
the Bitcoin blockchain’s liability. More generally, we call what you have possession of a positive liquid
balance, and we call whatever owes it to you a liquidity source. Any positive digital balance can be
understood as an obligation from a liquidity source.

But you can also tender assets you don’t already have (for which there is no pre-existing obligation),
if someone is willing to lend them to you or if you are authorized to issue them – in other words, if
there exists a repayment acceptance to you that you can draw on. A bank extending a $1000 credit
line to Alice can thus be understood as a $1000 acceptance from the bank to Alice, which she can
tender from to pay her obligations.

Once a set of obligations and acceptances are tendered and ascertained, they can be settled by applying
a settlement record.

Settlement Records. Settlement records are the output of the graph flow algorithm applied to
a network of tendered obligations and acceptances. They quantify how much of each obligation or
acceptance is to be discharged. Settlement records must be applied atomically in valid batches called
Settlement Flows. A settlement flow is a balanced cyclic set of settlement records – every valid
payment is a cycle. In Fig. 1, the transition from before to after is triggered by the application of the
settlement records in the settlement flow. For each edge (obligation or acceptance), a settlement flow
contains two settlement records, one for each node (for the same edge, e.g. an invoice). And for each
node, a settlement flow contains at least two records, balancing flows in and out (e.g. for offsetting
two different invoices).

From a network perspective, the settlement records in a cycle must execute atomically, since they are
mutually dependent. Either they all apply as a cycle, or none of them do. In the case of a simple
payment of an invoice by bank transfer from Alice to Bob, the bank’s internal settlement system
is sufficient to discharge Alice’s obligation to Bob. But to represent more complex networks and
settlement flows requires a platform for atomic execution of settlement records – namely, a blockchain.

In the case of an on-chain liquidity source like USDC or BTC, settlement records indicate balance
changes up or down for a user. But in the case of off-chain assets like invoices (even if represented on-
chain), a settlement record must generate a corresponding set-off notice, which we define as a formal
and legally binding communication about the result of a settlement process that can be applied to a
balance sheet. While settlement records can be executed on-chain, set-off notices must be executed
by independent actors off-chain (i.e. by marking down receivables and payables in local accounting
software).

8

By describing payments in terms of obligations and acceptances with overlaid tenders operated on by
balanced settlement records, we can optimize to find a settlement flow that discharges the most debt
with the least (and most preferred) liquidity. The presence of cycles and chains of obligations, both
across agents and liquidity sources, allows the network to discharge more debt than would be possible
otherwise, thanks to the power of set-off and the different ways to settle.

2.2 Four Ways to Settle

We now combine the graphical language of intents with the common accounting language of balance
sheets. In Fig 1 we saw Alice settle a debt by transferring an asset to Bob. But from a basic balance
sheet perspective, there are four ways to settle an obligation [15], which we refer to as (i) set-off, (ii)
assignment, (iii) overdraft, and (iv) assumption.6 As we’ll see, they correspond to (i) balance sheet
reduction, (ii) asset transfer, (iii) balance sheet expansion, and (iv) liability transfer. To summarize,
if I owe you and you owe me, we can do (i) set-off and reduce our balance sheets. If I have some
assets, I can do (ii) assignment and transfer the assets to you (Fig 1). If I don’t have assets, I can do
(iii) overdraft to borrow assets from someone else and transfer them to you, expanding some external
balance sheet. Or if you have a liability, I can do (iv) assumption to assume that liability from you.
The four ways are shown graphically in Fig. 2.

Alice Bob

N

i) SetOff

Alice Bob

N

ii) Assignment

Alice Bob

N

iii) Overdraft

Alice Bob

N

iv) Assumption

Alice Bob

N

Alice Bob

N

Alice Bob

N

Alice Bob

N

Before

After

Figure 2: Four Ways to Settle. There are four ways to settle the debt from Alice to Bob based on the four
combinations of assets and liabilities from Alice’s and Bob’s balance sheets. Either Alice has assets (i, ii) or
not (iii, iv) and either Bob accepts an asset (ii, iii) or reduces one of his liabilities (i, iv). Graphically, these
correspond to the four possible configurations of obligations and acceptances going into Alice and coming out of
Bob, completing a cyclic flow. Every settlement is a cyclic flow. We use N to represent the rest of the network
through which the settlement flows. In these examples, N is most simply understood as a liquidity source (like
a bank), but it could be any arbitrary network. Note that assignment and assumption are rotations of one
another – what is assignment for Alice is assumption for N, and assumption for Alice is assignment for Bob.

These four ways to settle can be used to describe a wide variety of payment and financial flows, as
we’ll describe below. They can also be combined in arbitrary ways to enable more efficient network
settlement. In what follows, we use balance sheets and graph representations to review the different
ways to settle. This framing will allow us to more completely define the graph optimization problem at
the heart of our payment system design. In each case, settlements are executed by applying settlement
records to a network of obligations and acceptances.

6We are building on Clavero’s formulation [15]. The four ways to settle are fundamental to bookkeeping and are
given by the 2x2 matrix of whether debtor and creditor altered their assets or liabilities. While Clavero focused on
describing accounts from the perspective of the payment system, we are more interested in a network perspective, so
our terminology differs slightly. What is called issuance in [15], we call overdraft, which in our formulation includes
issuance as a special case (when new monetary units are created).What is called novation in [15], we call assumption, to
distinguish it from the legal definition of contract novation and to emphasize its symmetry with assignment.

9

Set-off. Set-off is the discharge of obligations without money. This is done by balancing obligations
across balance sheets so they offset each other. If Alice owes Bob and Bob owes Alice, they can do
set-off. Set-off is more interesting when there are cycles of size greater than two – if Alice owes Bob
and Bob owes Carol and Carol owes Alice, they can all set off the lowest amount. We show this
graphically in Fig. 3, and using balance sheets in Fig. 4.

Alice Bob

Carol

20

3045
Owes

Before: After:

Owes

Owes

Alice Bob

Carol

1025
Owes Owes

Figure 3: Graph of 3-cycle set-off. Alice owes Bob 20, who owes Carol 30, who owes Alice 45. With set-off,
each obligation can be reduced by 20, fully discharging Alice’s debt to Bob, and partially discharging the others.
Total debt in the system drops from 95 to 35.

Assets Liabilities Assets Liabilities

Alice Bob

Before:

After:

Assets Liabilities

Carol

45 $ from Carol 20 $ to Bob 20 $ from Alice 30 $ to Carol 30 $ from Bob 45 $ to Alice

25 $ from Carol 10 $ to Carol 10 $ from Bob 25 $ to Alice

Figure 4: Balance sheets for 3-cycle set-off. The same as Fig. 3, but shown as balance sheets, where
obligations are liabilities for the debtor and assets for the creditor.

Set-off reduces the size of each party’s balance sheet by the amount of the settlement record.

Assignment. Assignment is the discharge of an obligation by the transfer of assets. Unlike set-
off, which is multilateral, assignment can be initiated unilaterally by the debtor of an obligation.
Multiple consecutive assignments allow the same money to be used to discharge a chain of multiple
obligations. Fig. 5 shows a chain of assignments involving three parties transferring $20 to clear $40
of debt. Assignment only reduces the balance sheet of the debtor via an asset transfer that reduces
their liability. For the creditor, assignment is asset substitution (i.e. replacing a receivable with cash).

Assets Liabilities Assets Liabilities

Alice Bob

t0 :

t1 :

Assets Liabilities

Carol

100 $ 20 $ to Bob 20 $ from Alice

20 $ to Carol 20 $ from Bob80 $

20 $t2 :

20 $

80 $

20 $ to Carol 20 $ from Bob

Figure 5: Assignment chain. Alice has $100, and owes $20 to Bob, who owes $20 to Carol. Alice uses $20 to
pay Bob, who then pays Carol. For simplicity, all debts are the same size.

As we saw in Fig 1, it is useful to think of a liquidity source as a node in the graph, which can be
connected to debtor and creditor nodes via obligations and acceptances, respectively. The liquidity
source, in the case of assignment, is the keeper of positive balances, its obligations to the firms.
The liquidity source could be a bank, a blockchain, or a mutual credit system. When representing
obligations from liquidity sources, we restrict them to only showing the amount tendered. Alice could
have $100 in the bank (an obligation of $100 from the bank), but only tenders $20.

If the liquidity source is part of an atomic settlement network, like a blockchain, then assignment and
set-off can be combined atomically into a multilateral operation so that assignment (the asset transfer)

10

only occurs between the first and last nodes in a chain of obligations, while all other obligations in the
chain are set off (i.e. going direct from t0 to t2 in Fig. 5). This avoids multiple independent assignments
down the chain, achieving the same result but in one step, and without creating a new relationship
between the first and last parties in the chain. This is important because it allows for significant
savings and optimizations over the graph without counterparty substitution or contract novation.

We depict the multilateral case in Fig. 6. Alice owes Bob, who owes Bill, who owes Ben, who owes
Carol. Bob’s, Bill’s, and Ben’s debts are cleared by the transfer of 20 units of liquidity directly from
Alice to Carol, atomically and with set-off notices received by all of them. In a single operation all
the debts are discharged and Alice’s 20 is transferred directly to Carol, without Alice or Carol ever
knowing about each other. Bob, Bill, and Ben never handle any money, and all their debt is cleared
by set-off. All the obligations disappear, and Carol’s acceptance to the liquidity source becomes an
obligation from it.

USDC

Alice Bob

20

20 20

20

Liquidity Source

Tendered
Obligation

Acceptance

Obligations

20 20Ben Carol

Liquidity

Owes Owes Owes Owes

Bill

Figure 6: Multilateral Settlement via Assignment. Many debts can be cleared by combining a single
assignment with many set-offs. Alice’s money gets assigned to Carol, and all debts are set off, without any
new relationship between Alice and Carol. The liquidity source could be any digitally programmable asset, like
USDC, BTC, etc.

In general, we will refer to tendering obligations from a liquidity source as assignment tenders or just
assignment.

Overdraft. Overdraft is discharge of one obligation by the creation of a new one – borrowing to pay.
While assignment draws on an obligation (an existing asset), overdraft draws on an acceptance (a new
debt). The dynamics of the new debt, its credit limit, interest rate, and repayment, can be defined
by a lending protocol, or what we call an overdraft facility. For a given type of liquidity, there can be
many different overdraft facilities, each defined by its own lending protocol or capital pool. In general,
we will refer to tendering such repayment acceptances as overdraft tenders or just overdrafts.

Fig. 7 shows a common case. A Bank opens an overdraft facility for Alice. Alice owes Bob, and Bob is
happy to accept bank money. Alice can draw on this overdraft facility, running up a new debt, which
appears as an asset to the Bank and a new liability to Alice, and which can be used to pay Bob. In
the end, Bob has bank money, and Alice owes the bank instead of Bob. Unlike set-off and assignment,
overdraft alone does not reduce the size of Alice or Bob’s balance sheets, but it does increase the
balance sheet of the Bank.

Assets Liabilities Assets Liabilities

Bank Alice

Before:

After:

Assets Liabilities

Bob

$50 to Bob $50 from Alice

$50 from Alice $50 to Bank$50 to Bob $50 from Bank

Figure 7: Overdraft. Alice draws on an overdraft facility (a line of credit with the Bank). Alice and Bob’s
balance sheets stay the same size, while the Bank’s balance sheet expands.

11

This bank balance sheet expansion is money creation, or issuance, and reflects the primary way new
money is created in the economy: banks extending credit by issuing new deposits. Note that the bank
is not using money it already has. And note also that Alice does not first take the loan, and then use
the asset she acquired in the loan to pay Bob via assignment – taking on the new debt and paying the
old debt are a single action. This is the meaning of an overdraft facility as used for payments (i.e. a
debt used to reduce other debt), in contrast to a loan (i.e. a debt used to acquire an asset). And it’s
possible because Bob accepts the bank’s liabilities as money. So the overdraft facility and the liquidity
source are the same node – the Bank.

But what if Alice doesn’t want to borrow from the Bank, and prefers a local Lender? The lender can’t
create money, and Bob doesn’t want to hold money with them (they’re not a bank), so Alice needs
to take a loan, and then pay. But with multilateral settlement, any lender can provide a credit line
through such an overdraft facility. When the overdraft facility and liquidity source are separate nodes
like this, we refer to it as overdraft without issuance, and we depict it graphically as in Fig. 8. While
the balance sheet of such a facility does not expand (they’re lending existing assets), the combined
balance sheet of the overdraft facility and the liquidity source does expand.7

Lender

Alice Bob

20

20 20

20Tendered
Repayment
Acceptance

Deposit
Acceptance

Obligations

20 20Ben Carol

Liquidity

Owes Owes Owes Owes

Bill

USDC20

Liquidity SourceOverdraft Facility

Figure 8: Multilateral Settlement via Overdraft. Alice doesn’t have money, but a Lender does, and
extends an acceptance to her. By Alice drawing on this credit line, Carol gets paid and all other debts are set
off. This is the same as Fig. 6, except now Alice will owe the Lender.

This distinction between overdraft with and without issuance enables us to think of issuance as a
kind of credit, a negative balance expected to be paid back. Most money issuance today is done
by expanding the balance sheets of commercial banks, using central banks as a backstop. But the
network structure surfaced by our design makes new opportunities for issuance possible. Effectively,
in our design, every agent can become a liquidity source, and every liquidity source an agent.

Assumption. Assumption is the discharge of an obligation by the transfer of a liability from one party
to another. It is the inverse of assignment. Assignment transfers an asset from debtor to creditor (the
debtor assigns the asset), assumption transfers a liability from creditor to debtor (the debtor assumes
the liability). Like assignment, assumption reduces the balance sheet of one party while leaving the
size of others unchanged.

As assignment’s inverse, assumption is routine for payment providers. This follows from the symmetry
in Fig. 2. When Alice’s obligation to Bob is discharged by assignment of her asset to Bob, the Bank’s
obligation to Alice is discharged by assumption of a new liability to Bob. Assumption is less familiar
to regular businesses, though it can appear in the form of legal contract novation, where three parties

7This is a subtle point that underlies why we use the term overdraft to refer to what is called issuance in [15]. We
reserve the term issuance for a network level distinction. In Fig. 2 we represented everything outside Alice and Bob as
a single node N. This N “provides” the liquidity to settle Alice’s debt to Bob, but can in itself be a complex network of
nodes. The simplest case is that it is one node, a Bank. In that case, we’d say the overdraft facility and liquidity source
are the same node, and thus it’s overdraft with issuance. But if the node N consisted of separate Lender and Bank nodes,
where the Lender has money in the Bank, then the overdraft facility and liquidity source are separate nodes, and it is
overdraft without issuance.

12

agree to discharge one liability and replace it with another. A more common transaction, especially in
trade credit markets, is factoring, where the creditor of an obligation is changed – the original creditor
sells the debt to someone else, usually at a discount. This is technically not assumption, but rather
a form of overdraft. Exploring a few scenarios here will help illustrate some important differences
between means of settlement that achieve similar results.

Suppose Alice owes Bob, who owes Carol, who accepts $, as shown in Fig. 9a. In invoice factoring
(Fig. 9b), Bob would factor (“sell”) his receivable from Alice to Frank for cash to pay Carol. In
this case a liquidity provider, Frank, is buying the receivable from Bob, seeing it as an asset he can
purchase at a discount and later collect on from Alice. This changes counterparties, since instead of
owing Bob, Alice now owes Frank, whom she doesn’t even know. Alice would much prefer to make the
decision for herself, rather than be forced by Bob. She could consider borrowing directly from Frank,
but maybe she’d prefer to borrow from Fiona (Fig. 9c). This distinction is important.

$

Alice

Carol

Bob

b) Factoring Solution
(creditor in control)

Frank

Alice

Carol

Bob

a) Starting State

$ $

Alice

Carol

Bob

c) Overdraft Solution
(debtor in control)

Fiona

Frank

Alice

Carol

Bob

d) P2P Solution
(debtor in control)

Initial Debts to
Clear

Three Possible Solutions Involving Extensions of Credit

Figure 9: Factoring vs Overdraft vs P2P Lending. A comparison of three different solutions to getting
Carol paid when (a) Alice owes Bob owes Carol. Blue indicates who is in control. Under (b) Factoring, Alice
is forced to owe Frank, who paid Bob. Under (c) Overdraft, Alice can choose to borrow from (and owe) Fiona
instead, who has no relation to Bob. Under a (d) P2P loan, Alice can choose to borrow from (and owe) Carol,
who doesn’t even need to advance assets. Factoring (b) is counterparty substitution and introduces Frank
between Alice and Bob (Alice will owe Frank, who paid Bob). Note that Alice has no control over who Frank
is. Frank is interested because he can purchase the receivable at a discount (not shown). The existence of
discounting necessitates an extra acceptance from Bob to Frank and requires the settlement take place in two
separate steps. In contrast, (c) Overdraft facilities and (d) P2P loans avoid counterparty substitution by using
repayment acceptances and set-offs in a single operation. After settlement, discharged repayment acceptances
become obligations from Alice (to Frank in (b), Fiona in (c) and Carol in (d)). In the case of (d), no assets are
required, and the cycle clears, leaving only Alice owing Carol.

By framing the availability of liquidity in terms of the structure of the debts, rather than factoring or
securitizing the assets, we can unlock new sources of liquidity within the network and empower debtors
with the credit most appropriate for them. A powerful example of this is a ‘p2p loan’, as shown in
Fig. 9d. Instead of borrowing assets from Frank or Fiona (outside the network), Alice borrows in
the form of an acceptance from Carol, allowing the whole network to be cleared without any assets,
leaving only a single debt from Alice to Carol to be paid in the future. Carol thus becomes a kind of
liquidity source for Alice, hinting at a larger equivalence that emerges from thinking in terms of the
graph: firms are liquidity sources and liquidity sources are firms.

Our goal here is to move from the common view of bilateral transactions to a new network view
of multilateral settlement. While we can zoom in on a particular obligation and talk about set-
off, assignment, overdraft, and assumption, we are ultimately concerned with larger networks and
settlement flows. The point is, liquidity is in the graph! Starting with the obligation network, the
addition of acceptances and liquidity sources, including p2p loans, extends the graph to make it more

13

dense and cyclical. We can do clearing without counterparty substitution or contract novation because
liquidity is hidden in the cycles. The key to our design then is an algorithm that finds cycles.

2.3 Graph Solving

Any graph algorithm to find cyclic structures can generate valid settlement records and function as
a solver. The sets of settlement records generated by solvers must execute atomically. Our default
solver is a min-cost max-flow algorithm called Multilateral Trade Credit Set-off (MTCS) [23, 22].

The existence of a cyclic structure implies that the amount of liquidity required to discharge all the
debt is less than the total amount of debt. We call this amount the Net Internal Debt (NID). MTCS
finds the minimum cost flow of this maximal amount of liquidity (the NID). Subtracting that flow
from the full graph yields the cyclic structure. The mathematical details are described in [22].

MTCS is designed for neutral settlement, but the optimal solution of the min-cost max-flow algorithm
is not unique. There are in general many optimal paths satisfying the problem. While randomness
could be used to pick between solutions, it would be better to enable other solutions to be expressed,
for instance through governance, a preference system, or other parameters.

Without a source of liquidity, only obligations in cycles can be cleared, and they can only be partially
discharged (up to the smallest debt in the cycle). But even small amounts of liquidity can result in
much greater amounts of debt being cleared, and with benefits for a larger number of participants.
By adding at least the NID worth of liquidity, 100% discharge of all obligations is possible. The
optimal solution found by MTCS implies that the amount of liquidity required is much smaller than
the total debt, due to the simultaneous set-off of chains of obligations. Fig. 10 shows an example of
this ‘multiplier’ effect.

Debt cleared (LHS)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Liquidity injected as a fraction of total debt

N
et
w
or
k
de
bt
cl
ea
re
d
as
a
fr
ac
tio
n
of
to
ta
ld
eb
t

A
vg
in
di
vi
du
al
-
fir
m
fr
ac
tio
na
lA
cc
ou
nt
s
P
ay
ab
le
cl
ea
re
d

Avg AP Cleared (RHS)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10: Variation of debt set-off expressed as a fraction of total debt. Percentage of debt cleared
(blue) and average fraction of accounts payable (AP) cleared for each firm (red) plotted against the amount
of liquidity injected as a fraction of the total debt. With no liquidity, nearly 10% of the debt is in cycles and
can still be cleared. The debt cleared (blue) rises steeply at first with slope greater than 1 (corresponding to
chains of obligations), then grows with slope = 1 (corresponding to the clearing of isolated obligations), before
levelling off at a fraction of injected liquidity that is significantly smaller than the total debt. The average
accounts payable cleared (red) also grows with injected liquidity, with the first plateau corresponding to the
clearing of large debts after the chains have been exhausted. The plot is based on anonymized Italian data:
1,280,000 invoices, 760,000 companies, December 2020.

14

A production system may have diverse solvers, optimized for different outcomes, and with access to
different views of the network and different liquidity sources. As we’ve seen, liquidity sources, lending
protocols, and issuance protocols can be incorporated as nodes within the graph being optimized over
by solvers, and can include the assets of debtors or external lenders, mutual credit, DeFi protocols,
currency issuers, and even p2p loans. By exposing the graph to multilateral solving and thus enabling
collaborative action by stakeholders, new forms of liquidity, and liquidity saving, become possible.

2.4 Liquidity

While a single liquidity source already provides significant benefits, we can introduce multiple sources
of liquidity for the same network, compounding the opportunities for, and the overall volume of,
setttlement flows, and greatly enhancing the network effect. Crucially, each currency “circuit” operates
separately, so no currency exchange service is needed for settlement.

Consider the case of two uncoupled liquidity sources, shown in Fig. 11. Assume for simplicity that
all obligation amounts are equal and denominated in USD, and that we have access to a price oracle
for all currencies in USD. We can see that Firm B is at the intersection of two separate cycles for
payment in USDC and payment in ATOM. B will benefit from the set-off in each cycle separately,
with no interaction between them, and without having to actually use either USDC or ATOM. In this
case, B only engages with set-off notices.8 Furthermore, the transfers of funds from A to C and from
D to E will take place in USDC and ATOM, respectively, again without any interaction or need for a
currency exchange service.

Now consider the case of Fig. 12, where there are no complete payment cycles in a single currency and
the symmetry of Fig. 11 is broken. Even this case can be solved via a single cycle across two liquidity
sources. Once again, A’s USDC can be used to pay C, and D’s ATOM can be used to pay E. The
currency transfers operate independently of each other, without an exchange service, according to the
settlement records that define the settlement flow.

USDC ATOM

A

B

C

E

D

Figure 11: Two uncoupled liquidity sources. B benefits from both without having to handle either.

USDC ATOM

A

B

C

E

D

Figure 12: Two liquidity sources in the same cycle. The use of multiple currencies can greatly improve
the ability to discharge debt in the network.

8If the obligation amounts were not equal, B would have to pay whatever is left after set-off in the appropriate
currencies.

15

Our design thus enables a large number of currencies and liquidity sources to be utilized in the
collaborative discharge of debt, greatly reducing working capital needs and various interest, exchange,
and transfer fees. It opens profound new possibilities for different currencies and assets to be used in
real world payments: so long as a small number of people are willing to use a currency, a much larger
group stands to benefit. It promotes an open platform for participation of diverse actors and liquidity
sources, and encourages development of new currency and credit protocols within a larger common
framework for collective debt discharge, which yields numerous benefits.

3 Cycles Protocol

We now turn from payment system design to protocol description. We begin with a problem statement
and a description of some user flows. We then describe the base privacy and settlement architecture
in more detail before turning to discussion on design choices and extensibility.

3.1 Problem Statement

The Cycles design requires execution of atomic multilateral settlement operations in a privacy-preserving
and extensible credit environment across multi-scale graphs. We break down the problem statement
into these parts.

Atomic multilateral settlement requires that settlement operations can occur “simultaneously,”
across a large number of participants, in an all-or-none fashion, as a low-cost collective agreement to
participate in cycles. These cycles can include obligations and acceptances across liquidity sources.
This means, at a minimum, that all set-offs and balance changes in a single cycle must be executed
atomically, across a set of parties who don’t necessarily all know each other (they only know their
direct counterparties). Each party in a settlement cycle must be able to provide cryptographic proof
for legal purposes that they are included in the cycle and that all operations within the cycle were
executed atomically. More specifically, Alice must be able to prove that if her debtor receives a set-off
notice that claims they don’t have to pay her, then she also received one, meaning her debt to someone
else was paid off or she received currency she accepts for payment.

Privacy requires first and foremost that obligation graphs are never revealed. This enables partic-
ipants to submit their obligations without concern that any of their counterparty relationships will
become known to third parties. However, since Cycles must perform a graph flow optimization algo-
rithm (consisting of, at a minimum, addition and comparison operations), it must be able to execute
this algorithm over a private graph. Secondly, privacy requires that obligation amounts are never
revealed to third parties. This has limitations in that many existing asset ledgers do not have this
property, and so it cannot be strictly enforced when assets enter and exit the Cycles system.

Extensible Credit Environment requires the seamless integration of various liquidity sources,
comprising existing assets and credit sources, alongside newly introduced ones. It should also accom-
modate user-specified and protocol-specified rules dictating their behaviour, such as issuance, pricing,
interest, repayment, liquidation, etc. This entails integrating existing assets and credit sources for
payments while facilitating the extension of new credit lines and the creation of novel credit assets.

3.2 User Flows

Assignment Tenders. The most basic use case is paying a bill. Like on any other blockchain, a
user Alice can maintain a stablecoin balance on Cycles and use it to settle her debts – whether to a
supplier, service provider, creditor, etc. The major difference with Cycles is that Alice doesn’t simply
publish a transaction to send $10 to Bob; she first declares that she owes Bob $10. This illustrates the
difference between an obligation and a tender. Almost any payment already involves an obligation;

16

they just aren’t represented on-chain.

Merely tendering $10 of stablecoin after declaring you owe $10 isn’t particularly interesting. The
magic comes from the network effect. Perhaps Alice’s counterparty Bob doesn’t accept stablecoins;
he only accepts ATOM. However, he may owe Carol $10, and Carol does accept the stablecoin. By
having Alice, Bob, and Carol all declare their intents, Cycles can transfer Alice’s stablecoin directly
to Carol (without them being aware of each other) and publish set-off notices for everyone.

This use case can be expanded by adding more users and currencies. This is what it means to
construct a graph. Across thousands of users, the network structure of the graph amplifies the benefits,
conserving liquidity and reducing risk for everyone as more cycles form among users and liquidity
sources. Users declare their obligations in a common unit of account9 and publish their tenders and
acceptances for any currencies supported by the network. At regular intervals (e.g. daily, monthly),
solvers execute and find solutions that clear the most obligations for the most people with the least
amount of liquidity, based on the published intents.

Overdraft Tenders. Cycles also supports liquidity via overdraft tenders – essentially, lending pro-
tocols implemented as smart contracts on the Cycles chain. These applications can directly integrate
into the shared obligation graph. Users can access only the minimum amount of credit needed to
optimize their payments, thus reducing interest costs.

Consider a user without any stablecoin, but with some ATOM on their balance sheet. They could put
up their ATOM as collateral in a lending protocol, allowing them to draw a stablecoin loan. However,
on Cycles, they can structure this loan as an overdraft facility, submitting tenders against it, even
before they draw it. The facility defines a set of rules for issuing repayment acceptances based on the
collateral. The graph optimization will draw only the minimum amount of stablecoin credit needed
from these acceptances to clear the debt. Further, the debt can be repaid automatically in the future
in the form of on-chain obligations back to the overdraft facility. If Alice draws on her stablecoin
overdraft to pay an obligation and later Bob owes her, solvers can optimize so that Bob’s assets are
effectively used to pay back Alice’s overdraft, without any extra effort from Alice or Bob. This helps
automate and improve working capital management, bringing increased efficiency and savings and
better access to capital, and making DeFi more useful for real world use cases.

Cycles thus provides a more convenient and optimized way to use cryptocurrencies and lending facilities
to support working capital concerns, reduce risk, and increase the likelihood of repayment. This opens
the door to larger markets, more borrowers, reduced risk for lenders, and overall greater efficacy.

Issuance. In addition to being a platform for the development of diverse protocols for lending existing
assets, Cycles also serves as a platform for protocols that issue new assets. In Section 2.2 we called
this overdraft with issuance. It is a type of overdraft where the assets being lent do not already exist,
but are created as part of the operation of lending. This includes collateralized stablecoin issuance
protocols [26] as well as alternative credit protocols like mutual credit [33, 18] and trust networks
[2]. By integrating directly into the graph, these protocols can benefit from the improved credit
environments and new mechanisms for stability, fairness, and yield.

External DeFi Integrations. So far we’ve been discussing assets and smart contracts living on
the Cycles chain, but Cycles is designed to be natively interchain. Lending protocols on external
chains can also participate as overdraft facilities in Cycles through a system of “virtual” tenders. To
understand this, note that overdraft can always be turned into assignment by first drawing on the
overdraft facility to pay yourself (i.e. a loan), and then tendering from assignment. The advantage of
overdraft is that by only drawing to make payments, you draw the minimal amount you need when
you need it, and don’t pay interest fees for cash to sit on your balance sheet.

9We leave multiple units of account for future work. In the end, Cycles must support graphs of different scales and
different units of account. This is a ripe area for research and new directions on the idea of “optimal currency areas”.

17

Figure 13: Cycles Architecture illustration

This is relevant for external lending protocols because it’s always possible to borrow from such a pro-
tocol, and then move assets to Cycles, to then tender them from assignment. But this is inconvenient
and expensive – it takes multiple steps and you have to pay interest fees on the full amount you
take out, even if you’ll only end up needing less. Cycles can automate all of this and minimize the
additional interest costs incurred from drawing from external overdraft facilities (ideally to 0) through
a careful combination of locking and interchain communication. This provides new ways for existing
lending protocols to increase their adoption and connect to the world of working capital finance.

With these user flows in mind, we now turn to details of the base protocol for privacy and settlement.

3.3 Privacy & Settlement Architecture

Our goal is to develop a solution to the problem of Section 3.1 that minimizes external institutional
dependencies and maximizes the protocol’s verifiability. That is, our goal is an Open Clearing Protocol.
This is made possible by enabling technologies: using a combination of Byzantine Fault Tolerant (BFT)
consensus [11], zero knowledge proofs (ZK) [27], trusted execution environments (TEEs) [14], and
obligation-based smart contract design [22], a distributed system can carry out the atomic multilateral
settlement operations in a private and extensible credit environment across multi-scale graphs.

The privacy design for Cycles takes the approach of a “ZK+TEE Side Car”. In order to provide
privacy, we make use of TEEs to carry out the graph computation, and in order to ensure integrity,
we use ZK proofs to verify the solution. The architecture is illustrated in Figure 13.

At a high level, the basic data flow is as follows. Users encrypt their intents (obligations, tenders,
acceptances) and submit them to the chain. Periodically, the TEE retrieves all encrypted intents
and decrypts them within the secure enclave. MTCS is run within the enclave, producing settlement
records as a solution. Some of the settlement records pertain to changes in digital asset balances (the
result of executing tenders), while others apply only to obligations. The latter are then encrypted
to the public keys of the relevant users. The TEE produces a cryptographic attestation to correct
execution within the enclave, as well as a ZK proof of the correctness of the result. The outputs –
including balance change notices, encrypted set-offs, and ZK proof – are then submitted back to the
chain, triggering the appropriate balance and state changes on-chain and committing to the set-offs, all
in a single atomic action. User clients can then check the chain for set-off notices encrypted to them,
and apply the result to their local accounting system. With this architecture, all graph information
is stored encrypted on-chain, such that only a TEE and appropriate users can have access.

For a graph G, the role of the TEE is to produce a valid and optimal flow solution F := Solve(G). A
valid flow is a balanced flow, i.e. for each node, the flow in and out of the node is equal. An optimal

18

flow is one that satisfies a graph flow optimization as outlined in Section 2.3. We use the max-flow
min-cost algorithm of MTCS as a default, though other optimality criteria can be defined. Correct
execution of MTCS produces a valid and optimal solution.

The TEE will normally produce a remote attestation, that is, a cryptographic commitment to correct
execution of a particular program (in our case, MTCS). Since we want to guarantee validity even if
the TEE is corrupted, we use a ZK proof, in addition to the remote attestation. To keep costs down,
initially we will only use the ZK proof to ensure the posted solution is valid, while optimality depends
on the TEE. This is enough to ensure atomicity of the solution and integrity of the balance sheets, as
we only need to verify that a proposed solution F is balanced and consistent with the inputs. A ZK
proof of validity IsValidFlow(G,F) can be cheaper than a proof of optimality, since checking validity
can be achieved in linear time O(|G|), while checking optimality by including the entire flow solver
algorithm in the ZK circuit could be asymptotically O(|G|2).

Notation. To set out some notation, we have that each user u is responsible for uploading their own
obligations, defining the subgraph G[u, :] of all edges radiating out from u to all other nodes. These
edges will be posted as encrypted values to the Cycles chain, denoted Ĝ := {Enc(xPub, G[u, v])}u,v,
where xPub is the public key of the TEE that values are encrypted to.

We assume the Cycles chain has access to the ledger A, mapping addresses to account balances.10

Account balances are represented as an obligation in the graph G where the debtor is a special symbol
L (i.e. u’s balance is an obligation from L to u). Note that we are considering assets “public” for
simplicity, since here we focus on privacy for the obligation graph G.11 Finally, we assume that all
users have an acceptance of infinite size to the liquidity source. The obligation graph G thus consists
of the aggregate total of all the obligations uploaded by users, as well as all tenders and acceptances
to and from the liquidity source L.

Zero Knowledge Proofs for Integrity Guarantees. A ZK proof can be used to validate the
output of the graph flow algorithm, ensuring that only balanced flows are applied to the graph, and
all user intents are respected. An idealized pseudocode for the smart contract verifier and included
ZK proof is shown in Figure 14. The Cycles chain operates on an encrypted and committed graph
denoted Ĝ, while the ZK proof contains the plaintext graph G as the witness. The resulting flow
solution F will be committed on-chain as well. Since we only want to allow each user to learn about
the set-offs pertaining to them, we publish an encryption of the corresponding set-off notices N̂ , along
with a ZK proof confirming that these are in correspondence with the solution F , and that F is a
subset of G. In this way, the ZK proof in conjunction with the Cycles chain provides an end-to-end
security guarantee about atomic multilateral settlement, without depending on the TEE at all.

We next explain several implementation details based on this high level plan.

Intent Posting and Batch Clearing. While we allow obligations to be entered into the system at
any time (i.e. the system provides a continuous service just like any blockchain), the clearing events
happen only periodically (such as daily, weekly, monthly) in batches. This means we have to pause the
continuous service during the time we run the batch, so it is no longer practical to cancel an obligation
once the MTCS algorithm has begun, or to submit new obligations to the current epoch. Obligations
can continue to be submitted, but they will only be eligible for the subsequent epoch. Additionally, we
need to take opportunities to do proactive validation of user transactions prior to the batch execution.
At the least, some real-time spam prevention mechanism is required, for instance the payment of fees.

Client-side Proactive Proving. In order to keep costs down and enable validation of user transac-
tions prior to batch execution, clients can proactively provide their own ZK proofs of the validity of

10For simplicity here we assume only a single asset type as a source of liquidity, using assignment, though we can easily
generalize to many sources and to overdraft.

11In the future we can make these balances private by using a shielded pool.

19

Notation

• Enc(k,m): encrypt the message m to public key k.

• xPub: the public key of the TEE.

• pubu: the public key of user u.

• Ĝ: the set of obligations (G) encrypted to xPub.

• N̂ : the set of set-off notices (N), encrypted to user public keys.

• F : a flow solution, the result of running MTCS. A subset of G.

Proof

• Input: [Ĝ, N̂]

• Witness: [G,F, {pubu}u]

• Verify:

– Decryption: G is an opening of commitment Ĝ.

– Ascertainment: Each obligation and acceptance inG has a valid signature from its debtor,
and each tender has a valid signature from its sender.

– Subset Flow: Each element f in F corresponds to an element g in G with the same debtor
and creditor and with 0 < f.amount ≤ g.amount.

– Balanced Flow: For each user i, the sum of amounts in F for creditor i equals the sum
of amounts in F for debtor i.

– Encryption: For each element f in F with debtor i and creditor j, N̂ includes Enc(pubi, f)
and Enc(pubj , f).

Figure 14: Idealized ZKP pseudocode. The proof must verify that the set-off notices were encrypted
correctly from a flow solution that is balanced and corresponds to a subset of obligations that were signed by
their debtors and correctly decrypted from those published on-chain.

20

their obligations, acceptances, and tenders. This way intents are checked “as they arrive” throughout
the period, and become “pre-validated,” at least enough to satisfy resource usage (e.g. pay fees), which
reduces the amount of work that has to be done at clearing time.

For simplicity, we have assumed that there is only a single obligation G[u, v] between two parties u
and v. For multiple obligations, such as multiple invoices, these should be aggregated into a single
total. This aggregation step does not have to be performed by the TEE; instead it could be carried
out by the debtor. Similarly, decomposing the result into specific invoices that are (perhaps partially)
discharged can be computed locally given the overall solution flow.

Decomposing Large Proofs. Proving the entire solution in one go for a large graph may be
prohibitive. At the graph level, the entire flow solution could be proven in steps by decomposing it
into smaller flows, and then constructing an aggregate proof across them. A standard technique for
breaking up large ZK proofs into a series of smaller ones is to use Merkle trees to pass the shared state
from one step of computation to another [16].

For example, given flows F1, F2, · · ·Fk, we would compute the sequence of residual graphs and inter-

mediate net positions that remain after applying each flow G
F1−→, G′

1
F2−→ · · · Fk−→ G′

k, and commit
each residual graph and intermediate net position in a Merkle tree. At each step i, we would include
the Merkle root of the previous step, which becomes part of the statement. We would then add to
the ZK proof a Merkle tree update witness. Since each Merkle root appears in the subsequent proof,
they bridge between the separate ZKPs of the residual graphs. A final proof can be constructed which
aggregates over all the intermediate proofs.

Blockchain as Coordinator for TEEs. In order to compute the solving function over the encrypted
graph, a TEE must have access to the corresponding private key xPriv. In order to provide redundancy,
we must be able to share the xPriv among multiple TEEs that can be used as backups in case one
crashes. This requires the use of a blockchain to coordinate this process. First, the blockchain is used
for validating remote attestation of the TEE. This is a certificate chain that can be posted alongside
the public key, and has a root of trust signed by the manufacturer. The remote attestation includes
a hash of the program binary, called the enclave hash. Second, the blockchain can be used to track
the valid enclave hash. Before xPriv is shared with a new TEE, it should be ensured that the posted
program binary corresponds to the one approved on-chain. Ideally, before updating an enclave hash
on-chain, the relevant software should undergo appropriate security audits and it should be confirmed
that the software build can be deterministically reproduced from the published repository.

Private Assets via Shielded Pool. The sender of an intent is leaked because ordinary transactions
use native cleartext tokens to pay fees. Users can arrange to separate the fee paying address from
their balance carrying address (i.e. the address which is debtor for their obligations, and which holds
their tendered balances), using the obligation graph itself for privacy to unlink the two addresses.
However, the balance carrying address is also a cleartext address, and so, while it can be hidden in the
obligation graph, any balance changes that result from the multilateral settlement will still be leaked.
This can be handled by adding a multi-asset “shielded pool” to the graph [24, 37], allowing balances
to be kept and updated in private. This would require additional computation from both the client
and the TEE to produce the necessary ZK proofs. These proofs would be publicly processed by the
validators, enabling balance changes to remain private. Only the privacy of the graph itself would
continue to rely on the TEE.

Mitigating the Privacy Limitations of TEEs.

In order to minimize the TEE’s degrees of freedom and attack surface area, and to mitigate against
grinding (i.e. running the TEE repeatedly on variations of the input to attempt data extraction), we
follow a protocol whereby each TEE node must have an interactive roundtrip with the blockchain.
This roundtrip makes use of a light-client protocol to ensure the TEE has an up-to-date view of the

21

chain, and can only run with the chain’s explicit permission. This limits the ability of nodes to access
any secret data while in an isolated sandbox.

Encrypted Queries. An extension of Cycles is to support user-defined graph queries. These have to
be authorized by individual users. This logic is readily implemented as a smart contract running on
the Cycles chain. One use of this is to allow the creditor of an obligation to decrypt the intent posted
on the blockchain by the debtor. Another is to allow the construction of advanced credit ratings based
on historical information in the payment graph. Note that processing these in real time raises stronger
questions about side channels than a batch operation.

3.4 Discussion

Here we discuss some of the design choices in the Cycles protocols and directions for future work. We
touch on privacy, extensibility, and economics.

Privacy. We require the ability to perform computations on private inputs and produce private
outputs. ZK proofs are effective for generating private outputs without divulging inputs; however,
they do not facilitate private computation on the inputs themselves. In other words, they can provide
privacy from the verifier, but not from the prover. Initially, they were utilized in blockchains for
shielded pools, enabling confidential asset transfers where each participant possesses the necessary
inputs to generate their own proofs.

In Cycles, the objective is to maintain privacy of the obligation graph during multilateral operations.
Unlike the case of shielded pools, where each user has access to all required inputs, no single user
in Cycles has knowledge of all inputs. Consequently, relying solely on ZK proofs is inadequate since
the prover would need access to all data. Many existing multilateral ZK proof systems, such as ZK
rollups, expect solver agents to have access to all clear text inputs.

To prevent solvers from needing access to the graph in clear text, we must be able to execute operations
on encrypted data. Broadly speaking, there are two approaches to solving this problem: multi-party
computation (MPC) and trusted execution environments (TEEs). Fully Homomorphic Encryption
(FHE) is often considered a third means of executing on encrypted data, but without using either
MPC or TEEs in the decryption process, FHE alone is insufficient since a single key can decrypt the
results.

MPC is a way of computing over encrypted data that distributes the trust required for privacy over a
set of N nodes, such that K of them can fail yet privacy would still be ensured. Typically K is set to
N/3, in order to balance privacy and availability guarantees. There are two main limitations to MPC.
The first is performance – while MPC is increasingly practical for managing keys, it suffers from poor
performance for more complex computations, with network bandwidth as a bottleneck especially for
geographically distributed nodes. Even more concerning than performance is the fact that K nodes
could collude to decrypt user inputs; such a breach of privacy policy might not be detected at all,
let alone be provable. Fully homomorphic encryption (FHE) can be used to improve performance of
MPC (by trading off network IO for compute), but does not address the collusion hazard. At present,
the only known way to address the collusion hazard is to additionally use TEEs.

TEEs such as Intel SGX and AMD SEV are based on trusted hardware that supports process isolation,
ensuring that even the operator of the hardware cannot tamper with or inspect the process while it
runs. This introduces a different kind of trust, since the manufacturer becomes the root of trust,
and could in principle access private data within the TEE, or could attest to incorrect executions.
Additionally, today’s TEEs have been prone to vulnerabilities that have been disclosed and patched
over several iterations in the past years [44]. However, TEEs are currently orders of magnitude more
performant than MPC, and many of the vulnerabilities can be mitigated by careful protocol design.
There is further promise for TEEs that are “secure-through-physics” [5].

22

Figure 15: Extended Cycles Architecture illustration

Thus we use TEEs and work around their limitations. Ideally, TEEs are used to the minimal amount
necessary to enable Cycles to satisfy its design requirements. In particular, we will use the TEE to
keep the graph private while the solver runs, and we will rely on a ZKP as a backup to the TEE so
that even if the TEE fails (privacy is violated), atomic multilateral settlement is still guaranteed. We
leave practical implementations of MTCS via MPC and/or homomorphic encryption for future work.
As noted in Section 3.3, Cycles can also be extended to utilize shielded pools to preserve privacy of
transferred amounts, though we leave this also for future work.

For side channels, we are not considering memory access pattern leakage. We think that when a batch
graph algorithm is used, this will have minimal impact. Investigating mitigations such as Oblivious
RAM is more important for real-time actions, which would leak more fine-grained information through
access patterns. For forward secrecy, the TEE’s public key can be changed with each epoch so that if
the data from one epoch does leak it does not compromise data from other epochs.

Extensibility

Cycles is built around an extensible, permissionless, Cosmos blockchain – the root Cycles blockchain –
which serves as the single source of truth. It is a bulletin board for collecting (encrypted) user intents
and set-off notices, a coordinator for the TEE-based computation, a verifier of the flow results, and an
executor of the final settlements. It also serves as the coordination point for digital assets on remote
chains, and as a host for new assets and credit instruments via a smart contract environment. This
extended architecture is depicted in Figure 15.

The Cosmos stack provides a rich set of tools for building reliable fault-tolerant and interoperable state
machines. Cosmos was born out of a philosophy of sovereign and interoperable monetary zones [28],
and has seen widespread adoption as a platform for launching blockchains and their token economies.
Cycles builds on and extends the Cosmos technology and philosophy by providing a common language
for describing payments, currencies, and credit protocols, and a new environment for decentralized
finance (DeFi) to operate in, in the form of an open clearing club, that can more directly interface
with the real world of trade and commerce.

To maximize impact, Cycles must support an extensible credit environment that can easily integrate
with asset and credit facilities defined both externally and natively to the system. Assets and credit
defined outside Cycles must be able to flow into Cycles, and new assets and credits must be able to
be created within Cycles itself. Cosmos blockchains provide advanced capabilities for interoperability
via the InterBlockchain Communication (IBC) protocol. IBC-enabled blockchains can easily transfer
assets between one another in a trust-minimized way. More generally, the Interchain Accounts (ICA)
protocol, built on IBC, allows one blockchain to perform arbitrary operations on another chain.

23

Cycles thus brings in liquidity from across the Cosmos ecosystem using IBC, allowing diverse assets
to be used on the Cycles chain to discharge obligations, and making use of ICA to enable credit to be
drawn from external Cosmos lending protocols in an automated and optimized way. Cycles is also de-
signed to support assets and credit from Ethereum, which provides the largest source of permissionless
lending protocols. Cycles thereby offers both the Cosmos and Ethereum DeFi ecosystems new oppor-
tunities for their credit facilitation to have more direct positive impact on real-world commerce and
payments by integrating into the obligation graph. Cycles can also be connected to other blockchain
environments either via custom bridges, or ultimately via widespread adoption of IBC.

The Cycles chain uses a smart contract-based execution environment to support the creation of new
assets and credit facilities natively on-chain. Smart contracts can themselves participate directly as
firms in the graph, with their own obligations, tenders, and acceptances, and programmatic patterns
for participation on their own account and on account of end-users. Every account is thus a node in
the obligation graph, and every node in the obligation graph is an account. Native smart contract
assets and overdraft facilities have the advantage of more direct composability with the graph flow
optimization, allowing for lower costs and more functionality. These native facilities can also opt to
use Cycles’s native privacy architecture, having their state and execution logic managed by TEEs,
using ZKPs as much as possible to guarantee integrity. Over time, the privacy architecture can be
extended to further reduce the reliance on TEEs.

In Cycles, by default, every account is effectively a lending protocol by virtue of being able to offer
repayment acceptances and in turn receive obligations. Repayment acceptances are one of the most
fundamental design elements of Cycles. In a sense, Cycles is about making repayment acceptances
(the general class of possible lending protocols) as accessible and flexible as possible. The primary
use case for Cycles smart contracts, then, is building novel credit protocols that integrate with a
larger obligation graph allowing them to take advantage of more sophisticated decision making. This
includes better credit ratings, pricing and targeting of liquidity injection, managing non-performing
loans, risk reduction, and ultimately new and more sustainable sources of yield.

Overdraft facilities in Cycles can also define standing patterns of tenders and acceptances, as well
as obligations, on behalf of users. Thus when a user opts into an overdraft facility, the facility can
submit specific patterns of intents on the user’s behalf. In this way Cycles can express diverse trust
networks and credit protocols. Cycles can also incorporate exchanges, which can be understood in
terms of tenders and acceptances between different currencies at different prices. Exchanges are thus
a degenerate form of our model, devoid of obligations. Notably, decentralized exchange systems can
be incorporated strategically into the graph in a manner that provides additional flow routes between
liquidity sources. Referring back to Fig. 12, if there was no obligation from D to C, but instead we
had an exchange between the two liquidity sources, A’s USDC could be swapped to ATOM and paid
to E, still completing the cycle.

Economics

A core insight of Cycles is that extensibility in payment system design comes from interpreting all
intents in terms of their underlying obligation structure. In particular, an acceptance is identical to an
extension of credit, and becomes a future obligation: publishing an acceptance to a liquidity source is
the same as saying you’re willing to have that liquidity source owe you. This conceptualization allows
us to see a certain equivalence between firms and liquidity sources – firms are in themselves a kind of
liquidity source (they can extend credit to others) and liquidity sources are a kind of firm (they can
have their own behaviour and participate as agents in the graph). This opens profound possibilities
for the design and integration of new credit protocols in payment systems.

Cycles, then, is not just a protocol to clear your existing obligations with your existing assets, but
rather a platform for accessing and issuing diverse sources of credit in an environment that is actually
risk-reducing. Cycles, via MTCS, contributes to risk reduction across many dimensions, and thus

24

enables a preferred environment for lending and borrowing. Individual enterprises reap the benefits
of diminished risk due to regular balance sheet contraction, reducing leverage and supporting credit
scores. By eradicating gridlocks within the payments graph using set-offs, MTCS reduces the payment
risk, improves the days payable, and consequently reduces the late payment issue. This influence
extends to loan repayments, as the system becomes a valuable tool for using circuit laws to recover
non-performing loans (NPL) by extending new credit. Unlike central clearing houses, Cycles achieves
this de-risking without introducing central counterparties to whom significant risk is transferred.
Furthermore, Cycles presents an opportunity for more sophisticated credit risk assessment based on
knowledge of the payment network.

These risk reduction benefits apply in general, in the environment created by Cycles, across a diversity
of lending and issuance protocols. Cycles can present itself to firms as a treasury dashboard with an
overview of the firm’s assets, overdraft facilities, and payment obligations. This creates an opportu-
nity to make better-informed decisions about the use of available resources or to even automate the
relevant tasks, to improve working capital conditions, reduce costs, and reduce risks. Such treasury
functionality is normally reserved for large financial institutions, but via Cycles can be more readily
made available to all.

Cycles is specialized around a batch operation that solves a flow optimization problem for accounts.
The use of encryption and multilateral batching provides native censorship resistance, opens new
economic design patterns, and allows specific economic objectives to be pursued during clearing.
Cycles thus creates new economic possibilities for participants in credit networks. Leveraging the
obligation graph allows participants to access better sources of credit, and thus save on interest fees
and extractive terms. These benefits can in turn be shared with those that enable them across the
graph. For each user, we can define a portfolio pricing rule, adding up their nominal assets minus
their liabilities, and scaling by interest rates where appropriate. We can then incorporate this into the
definition of our MTCS flow optimization to find sources of credit that minimize cost to the user.

We can thus conceptualize Cycles as a decentralized credit fair, where numerous participants gather to
seek out the best sources of credit for themselves to unlock the greatest amount of economic activity
with the least amount of cash liquidity.

4 Conclusion

In this paper we introduced Cycles, an open clearing and issuance protocol. Cycles is based on a
graph-theoretic understanding of the payment system that takes advantage of the network structure
of credit relationships to clear the most debt with the least liquidity. This graph-based view enables
new kinds of emergent economic behaviour by surfacing that firms themselves can serve as liquidity
sources, and liquidity sources can behave like firms. The payment system design that results is
unique in that it is based on atomic multilateral set-off operations which do not depend on a central
counterparty or financial intermediary, and thus work to reduce both systemic and individual risk
within the network. As a Cosmos blockchain, Cycles can preserve the privacy of its users and can
be extended to enable diverse currencies and credit protocols to plug into the graph, allowing users
to leverage their preferred assets for settlements and to access their most preferred sources of credit,
while unlocking new opportunities for both costs and rewards to be shared across the network. Cycles
thus not only innovates on critical issues in payments and financial systems architecture, addressing
the liquidity pressure bearing down on small business around the world, it also offers a unique and
compelling use case for blockchains, and provides a means for existing blockchain protocols to have
more direct impact in the critical world of working capital concerns. Cycles: Respect the Graph.

25

Acknowledgments

This work builds directly on foundational prior work done with Giuseppe Littera [23]. The language
developed in this paper was worked out over many sessions between the authors and other members
of the Informal Systems Cycles team, especially Giuseppe Littera and Soares Chen. Other members
of the Informal Systems team reviewed earlier drafts and provided valuable feedback, including Mark
Yamashita, Juan Beccuti, Justin Wasser, and Arianne Flemming, as did Informal’s investors, including
personnel from CMCC Global, Maven11, Nascent, Cygni Capital, BKCM, and CMT Digital. Others
who reviewed drafts and provided valuable feedback include Christopher Goes, Julio Linares, Maxime
Monod, and Matthew Di Ferrante. We thank the reviewers from the Science of Blockchain Conference
2024 for their review on an earlier draft. We are grateful especially to Zarko Milosevic and Dan Elitzer
for their incisive critiques and suggestions on an early version, which played a crucial role in refining
this paper. The Interchain Foundation provided partial funding in 2022, which supported our research
endeavors during the early phases of this work. Special appreciation is due to Informal Systems Inc,
its members, and investors for providing the primary financial and organizational support for this
work.

References

[1] Massimo Amato and Luca Fantacci. The End of Finance. Polity, Cambridge, 2012.

[2] Sowelu Avanzo, Teodoro Criscione, Julio Linares, and Claudio Schifanella. Universal basic income in
a blockchain-based community currency. In Proceedings of the 2023 ACM conference on information
technology for social good, pages 223–232, 2023.

[3] Walter Bagehot. Lombard Street: A description of the money market. HS King&Company, 1873.

[4] European Central Bank. Survey on the access to finance of enterprises in the euro area, 2023. URL:
https://www.ecb.europa.eu/stats/ecb_surveys/safe/html/ecb.safe202306~58c0da48d6.en.html.

[5] Sylvain Bellemare. Research directions for verifiable crypto-physically secure tees. arXiv preprint
arXiv:2410.03183, 2024.

[6] Claudia Berloco, Gianmarco De Francisci Morales, Daniele Frassineti, Greta Greco, Hashani Kumarasinghe,
Marco Lamieri, Emanuele Massaro, Arianna Miola, and Shuyi Yang. Predicting corporate credit risk:
Network contagion via trade credit. PLoS One, 16(4):e0250115, 2021. URL: https://journals.plos.
org/plosone/article?id=10.1371/journal.pone.0250115.

[7] Nils Bertschinger, Martin Hoefer, and Daniel Schmand. Strategic payments in financial networks, 2019.
arXiv preprint 1908.01714. URL: https://arxiv.org/pdf/1908.01714.pdf.

[8] Bruno Biais and Christian Gollier. Trade Credit and Credit Rationing. The Review of Financial Studies,
10(4):903–937, 1997. URL: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=

72ee9c4a526142780b45c5f65f8f6fb425fbf366.

[9] Frédéric Boissay. Credit chains and the propagation of financial distress, 2006. ECBWorking Paper No. 573,
European Central Bank. URL: https://www.econstor.eu/bitstream/10419/153007/1/ecbwp0573.pdf.

[10] Marie-Thérèse Boyer-Xambeu, Ghislain Deleplace, and Lucien Gillard. Private Money & Public Currencies:
The 16th Century Challenge. Routledge, London, 1994.

[11] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains. PhD thesis, University
of Guelph, 2016.

[12] Charles W Calomiris and Stephen Haber. Fragile by design: The political origins of banking crises and
scarce credit. Princeton University Press, 2015.

[13] Edward Chancellor. The price of time: the real story of interest. Grove Press, 2022.

[14] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah Johnson, Ari Juels, Andrew
Miller, and Dawn Song. Ekiden: A platform for confidentiality-preserving, trustworthy, and performant
smart contracts. In 2019 IEEE European Symposium on Security and Privacy (EuroS&P), pages 185–200.
IEEE, 2019.

26

https://www.ecb.europa.eu/stats/ecb_surveys/safe/html/ecb.safe202306~58c0da48d6.en.html
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250115
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250115
https://arxiv.org/pdf/1908.01714.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=72ee9c4a526142780b45c5f65f8f6fb425fbf366
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=72ee9c4a526142780b45c5f65f8f6fb425fbf366
https://www.econstor.eu/bitstream/10419/153007/1/ecbwp0573.pdf

[15] Borja Clavero. Money and Hierarchy: Four Ways to Discharge a Payment Obligation. Technical re-
port, Local First CIC, De Monfort University, 2022. URL: https://papers.ssrn.com/sol3/papers.
cfm?abstract_id=4032398.

[16] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael Naehrig, Bryan
Parno, and Samee Zahur. Geppetto: Versatile verifiable computation. In 2015 IEEE Symposium on Security
and Privacy, pages 253–270. IEEE, 2015.

[17] Filippo De Marco, Christiane Kneer, and Tomasz Wieladek. The real effects of capital requirements and
monetary policy: Evidence from the united kingdom. Journal of Banking and Finance, 133:106237, 2021.

[18] Paolo Dini and Alexandros Kioupkiolis. The alter-politics of complementary currencies: The case of Sardex.
Cogent Social Sciences, 5(1):1–21, 2019. https://www.tandfonline.com/doi/full/10.1080/23311886.
2019.1646625.

[19] Larry Eisenberg and Thomas H Noe. Systemic Risk in Financial Systems. Management Science, 47(2):236–
249, 2001. URL: http://www.jstor.org/stable/2661572.

[20] Daniela Fabbri and Leora F Klapper. Bargaining power and trade credit. Journal of corporate finance,
pages 66–80, 2016. URL: https://openaccess.city.ac.uk/id/eprint/17179/1/.

[21] Maria Finnegan and Supriya Kapoor. ECB unconventional monetary policy and SME access to finance.
Small Business Economics, 2023. URL: https://doi.org/10.1007/s11187-023-00730-0.

[22] Tomaz̆ Fleischman and Paolo Dini. Mathematical Foundations for Balancing the Payment System in the
Trade Credit Market. Journal of Risk and Financial Management, 14(9):452, 2021. Available online:
https://www.mdpi.com/1911-8074/14/9/452.

[23] Tomaz̆ Fleischman, Paolo Dini, and Giuseppe Littera. Liquidity-Saving through Obligation-Clearing and
Mutual Credit: An Effective Monetary Innovation for SMEs in Times of Crisis. Journal of Risk and
Financial Management, 13(12):295, 2020. Available online: https://www.mdpi.com/1911-8074/13/12/

295.

[24] Christopher Goes, Awa Sun Yin, and Adrian Brink. Anoma: a unified architecture for full-stack decen-
tralised applications.

[25] Thomas Greco. The End of Money and the Future of Civilization. Chelsea Green Publishing, 2009.

[26] SC Inoescu and Ameen Soleimani. Rai: a low volatility, trust minimized collateral for the defi ecosystem,
2020.

[27] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou. Hawk: The
blockchain model of cryptography and privacy-preserving smart contracts. In 2016 IEEE symposium on
security and privacy (SP), pages 839–858. IEEE, 2016.

[28] Jae Kwon and Ethan Buchman. Cosmos whitepaper, 2016.

[29] Tim Lee, Jamie Lee, and Kevin Coldiron. The Rise of Carry. McGraw-Hill, New York, 2020.

[30] Vivien Lefebvre. Trade credit, payment duration, and smes’ growth in the european union. International
Entrepreneurship and Management Journal, 19:1313–1340, 2023. URL: https://link.springer.com/
article/10.1007/s11365-023-00871-4.

[31] Harry Leinonen. Liquidity, risk and speed in payment and settlement systems – a simulation approach.
Technical report, Bank of Finland, 2005. URL: https://publications.bof.fi/bitstream/handle/

10024/45674/118263.pdf?sequence=1.

[32] Bernard Lietaer and Jacqui Dunne. Rethinking Money: How New Currencies Turn Scarcity into Prosperity.
Berrett-Koehler, San Francisco, 2013.

[33] Giuseppe Littera, Laura Sartori, Paolo Dini, and Panayotis Antoniadis. From an Idea to a Scalable Working
Model: Merging Economic Benefits with Social Value in Sardex. International Journal of Community Cur-
rency Research, 21:6–21, 2017. https://ijccr.files.wordpress.com/2017/02/littera-et-al.pdf.

[34] Perry Mehrling. The new Lombard Street: how the fed became the dealer of last resort. Princeton University
Press, 2011.

[35] Hyman P Minsky and Henry Kaufman. Stabilizing an unstable economy, volume 1. McGraw-Hill New
York, 2008.

[36] Onur Özgöde. The emergence of systemic risk: The federal reserve, bailouts, and monetary government at
the limits. Socio-Economic Review, 20(4):2041–2071, 2022.

27

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4032398
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4032398
https://www.tandfonline.com/doi/full/10.1080/23311886.2019.1646625
https://www.tandfonline.com/doi/full/10.1080/23311886.2019.1646625
http://www.jstor.org/stable/2661572
https://openaccess.city.ac.uk/id/eprint/17179/1/
https://doi.org/10.1007/s11187-023-00730-0
https://www.mdpi.com/1911-8074/14/9/452
https://www.mdpi.com/1911-8074/13/12/295
https://www.mdpi.com/1911-8074/13/12/295
https://link.springer.com/article/10.1007/s11365-023-00871-4
https://link.springer.com/article/10.1007/s11365-023-00871-4
https://publications.bof.fi/bitstream/handle/10024/45674/118263.pdf?sequence=1
https://publications.bof.fi/bitstream/handle/10024/45674/118263.pdf?sequence=1
https://ijccr.files.wordpress.com/2017/02/littera-et-al.pdf

[37] Penumbra. The penumbra protocol. https://protocol.penumbra.zone/, 2024.

[38] Mitchell A Petersen and Raghuram G Rajan. The benefits of lending relationships: Evidence from small
business data. The journal of Finance, 49(1):3–37, 1994. URL: https://onlinelibrary.wiley.com/doi/
10.1111/j.1540-6261.1994.tb04418.x.

[39] Laura Sartori and Paolo Dini. Sardex, from complementary currency to institution. A micro-macro case
study. Stato e Mercato, 107:273–304, 2016.

[40] Slobodan Simić and Vladan Milanović. Some Remarks on the Problem of Multilateral Compensa-
tion. Publikacije Elektrotehnic̆kog fakulteta. Serija Matematika, pages 27–33, 1992. Available online:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.8429&rep=rep1&type=pdf (ac-
cessed on 23 June 2021).

[41] Peter Spufford. Money and its use in medieval Europe. Cambridge University Press, 1988.

[42] Tobias Studer. WIR and the Swiss National Economy. WIR Bank, Basel, 1998.

[43] UNIDROIT. Principles of International Commercial Contracts, Art. 1.6(2), 2016. International Institute
for the Unification of Private Law.

[44] Stephan van Schaik, Alex Seto, Thomas Yurek, Adam Batori, Bader AlBassam, Christina Garman, Daniel
Genkin, Andrew Miller, Eyal Ronen, and Yuval Yarom. SoK: SGX.Fail: How stuff get eXposed. https:

//sgx.fail, 2022.

[45] Ludwig Von Mises. The theory of money and credit. Skyhorse Publishing, Inc., 2013.

[46] Adam Walker. A Hoard of Unpaid Invoices: Dissecting Economies & Private Market Forces To Solve B2B
Late Payments, 2017. MS Thesis, Rocherster Institute of Technology. URL: https://scholarworks.rit.
edu/cgi/viewcontent.cgi?article=10760&context=theses.

28

https://protocol.penumbra.zone/
https://onlinelibrary.wiley.com/doi/10.1111/j.1540-6261.1994.tb04418.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1540-6261.1994.tb04418.x
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.8429&rep=rep1&type=pdf
https://sgx.fail
https://sgx.fail
https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=10760&context=theses
https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=10760&context=theses

	Introduction
	Payment Systems

	Design
	System of Intents
	Four Ways to Settle
	Graph Solving
	Liquidity

	Cycles Protocol
	Problem Statement
	User Flows
	Privacy & Settlement Architecture
	Discussion

	Conclusion
	References

